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Reparametrization-covariant theory for on-line learning of probability distributions
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We discuss the on-line learning of probability distributions in a reparametrization covariant formulation.
Reparametrization covariance plays an essential role not only to respect an intrinsic property of “information”
but also for pattern recognition problems. We can obtain an optimal on-line learning algorithm with reparam-
etrization invariance, where the conformal gauge connects a covariant formulation with a noncovariant one in
a natural way.
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[. INTRODUCTION tribution within the framework of on-line learning. In gen-
eral, no finite number of example data allows us to determine
The inference of probability distributions is of fundamen- the distribution uniquely. Therefore, we have to adopt a
tal importance in learning theory. For example, it gives us gorobabilistic description, which is given by Bayes’s rule as
unified framework including both supervised and nonsuperthe probability of a distributior [1].
vised learning schemes. One approach to the problem is to

project the distributions to a space parametrized by a finite P[P, ...,PN|QIP[Q]

set of coordinates and to determine their locations on it. P[Q|Py, ... ,Py]= P(P Py ,

However, this prescription inevitably excludes the distribu- et N

tions with a lot of features. Therefore, efforts have been de- Q(Py)---Q(Py)P[Q]

voted to the original problem of determining probability dis- = ,

tributions themselves. JDQQ(Pl)---Q(PN)P[Q]
Among others, field theory formulates the problem in a

natural way. It is the scaling analysis that leads us to optimal (1)

algorithms not only in the batch learning scheme but also in
the on-line learning on¢l,2]. This is because the scaling whereP[Q] denotes a “prior distribution.” It is a probabil-
tells us how to control the number of degrees of freedom thagy density in the space of possible distributions and encodes

we prepare for a learning system. This problem has beegur a priori knowledge of the functio.
approached from various directioff3)].

However, the algorithms of Reffl,2] depend on a spe-
cific coordinate, in which we observe example data. Infor-
mation or probability distributions are originally independent  First, we start from the case in one-dimensional space. To
of how to describe them. Therefore, it is desirable to derivemake our learning problem well posed, we must not intro-
learning algorithms that respect this intrinsic property of in-duce too many degrees of freedom to be determined. There-
formation. We can resolve the problem in a geometricallyfore, the prior distribution is chosen to define a scalar field
covariant formulation, which has already been obtained irtheory with a normalization constraifif] so that it may
the context of batch learningl]. It is reparametrization in- suppress short wavelength modes of the probability function
variance that characterizes such algorithms. Reparametrizg enough. Furthermore, reparametrization invariance re-
tion invariance is also important from the practical point of quires us to couple the scalar field to one-dimensional grav-
view. It plays a crucial role in pattern recognition problemsity [4]. Although the gravity may seem to introduce another
such as visual and speech information processes. local degree of freedom, it causes no problem since it is

In this paper, we discuss on-line learning of probability eliminated through the gauge fixing procedure. Introducing a
distributions in a reparametrization-covariant form. We will scalar field—»<¢<o and a metrich in one-dimensional
find that the conformal gauge plays a crucial role in connectspace, we write the probability function &= he™ ¢/I. We
ing a covariant formulation with a noncovariant one. There-should note that the length of a paramdtean be included
fore, we can also obtain an optimal on-line learning algo+n a scalar density/h. Therefore] may be fixed to be of unit

A. One-dimensional case

rithm with reparametrization invariance. length in numerical studies, and only plays a role to ensure
the consistency of dimensions. As a result, we can explicitly
Il. COVARIANT FORMULATION write down the prior distribution in a coordinakeas

Let us describe inference problems in such a way as is _ i _ |_ 1 2
independent from a specific coordinate system. We observe a AQI= Zo ex 2 dxyh (9x)
series of sample point8,,P,, ... ,Py in a D-dimensional

space, which are drawn independently from an unknown _EJ' }J’ o)
probability distributionQ*. Then, we want to infer the dis- I dx/hF(¢) |5 I dxyhe 1. @
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Here, we have introduced an unknown scalar funck@®),  the leading correction to the classical acti@fg,h,\)

which is important in the on-line learning scheme and deter-, - N/21) rdv e (Y24 where the classical solution
mined by the requirement of renormalizabilif2]. The & g(N/21)[dy ' Rey)

function gives the constraint to normalize the probability dis-
tribution, and the factoZ is a normalization constant of the
prior distribution.

From the prior distribution(2) and Bayes' rule(1), 1 R
we find the partition function to be Z _j dy e ?W=1. (6)
=(1/Zp) f(dN/27) [ Dh D¢ exd —(1/g)S(h, ¢,\) ], where |

andA are defined by the equations

~1202p+F'($)—ike ?=—NIPy(y), (5)

As a result, we introduce a paramelgy and determine the

I 1 i .
S= EJ dxvh=Y(d.¢)2+ I_J dxyhF(¢) unknown functionF so as to make the actiqd) renormal-
izable.
1
in = —b_ _
+in Ifdx\/ﬁe 1 +NfdeN[¢ In vh]. F(d)=koe (129, kosz_gm_ o
()

Then, applying the constrai®) to the integration of Eq5),
The constang is introduced to count fluctuation effects, and we find that {(A)y=N—kySdy e ¥2N/2]. Hereafter, we

is set to 1 in numerical analysi®y is a scalar density of explicitly attach the numbeN of the examples we have al-
sample data, given biPy(x) = (1/N)SfL, 5(x—X;). ready observed.

For further analysis, we consider the asymptotic situation |n order to derive the on-line learning algorithm for the
N>1 so that we may regard the functiéi(x) as continu-  expectation valués) of the field ¢, we note that ¢)= ¢ in
ous and differentiable. Then, we have to note that the partia, approximation level. Then, the variation of E§) gives
tion function Z is not well defined because of the infinite ha on-line learning algorithm fof¢) in the coordinatey,

volume of reparametrization symmetry group. Therefore, W&y hich is identical to the one in the noncovariant formulation
need to divide the functioZ by the volume. This can be 5.4 s proved to be optimé?]

easily done through the gauge fixing procedure, in which we

now pick up the metrich satisfying the conditionh(x) 1

=(dy/dx)2. This gauge fixing condition corresponds to the A{¢y(y))= —J dy’ GN(y,y’)[ —8(Y' —YNt1)
“conformal gauge” in one-dimensional space. Although the 9

gauge fixing condition eliminates a local degree of freedom A(iX)N 1 dky

of the metric, we also have ghost fields through the gauge

fixing procedure. However, they decouple to other fields, so

that we do not have to consider them in the following. Thus, (8)

we can leave one local degree of freedgmwhich is ap-

propriate to learning problems. wheredky /dN=g/4\/N is therenormalization group equa-
The gauge condition leads us to observe the system in@on of the parameterky. The change A(iN)y=1

reparametrization-invariant coordinatey(x) = [*\h(s)ds = —kyeM2X¢NOUN+1)/4N is derived from the variation of the

4] his conrdinate s cquvalent 0 the roper me n relaparameter ) The Greeris nclort(y.y) is the
! >19]- I : ‘ v learning rate withéy(y) as local bin size.

write the action(3) in terms of invariant quantities

—(only")) o = TN A= (12 oY)
€ T2 AN e :

min(y,y") gN(S)

max(y,y’ ds
GN<y,y'>=%m(y)gmy')exp[— [

| 1
S= §f dy(dy)*+ ,—f dy F(o(y))

9

+in EJol e M1 +NJd Pu(Y) &(y) . k e
| y Yy Pnly) oty gN(y):|{(i)\)Ne<¢N(Y)>+Ze(l/2)<¢N(y)> (10)
—NJ dx Py(x)Inyh(x). (4) Finally, we will derive the relation betweenandy coor-

dinates. We obtain the following equation from the variation

This form of the action explicitly shows that we obtain only ©f the action(4) with respect to the functiog(x),
fluctuation effects with reparametrization invariance. There-

fore, this ensures that we can choose the funckdgip), i Pn(x)
which keeps the invariance of the action. dx y'(X)

Now, we evaluate the functional integration @f(y)

around classical solutions. However, we note that#tfeeld ~ Equation (11) is easily integrated to give y(x)
part of the actior(4) is identical to the one in the noncova- =(1/N)EiN:10(x—xi). Here, we have fixed a global degree
riant casd2]. Therefore, we can apply our previous result of of freedom of the metriti(x) so that the functiory(x) may

—0. (11)
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transform the interval x_ ,x, ] to [0,1], wherex_ and x, of short wavelength modes of the conformal mode. This is
are the coordinates of the lower and the upper ends of thalso seen from our previous result that the optimal error de-
interval we observe. In on-line learning scheme, we maycay is realized when we choose our hypothesis function from
construct the functioy(x) iteratively, the C2?P class[2]. From these reasons, we will limit our-
selves to the asymptotic cabe>1 in the following.
As a result, we choose the following prior distribution so

1 1 that the conformal mode may not give ultraviolet diver-
YN+1(X)2(1_N)YN(X)+N9(X_XN+1)- 12 gences (2>D):

From the construction of the coordinatewe easily see the
|2a7D

o

reason why we can obtain a reparametrization-invariant al- 1 b w22
gorithm(8). The coordinatg labels the data points, observed P[Q]zz—oex ) fd X\/H(Vx R)

in x coordinate, according to their orders from one &ndof

the interval. Therefore, equivalent distributions under rep- 1 1

arametrizations irx coordinate are described identically to - |_Dj dDX\/ﬁF(hw) |_Df d®xh— 1}
each other in thg coordinate. Thus, we have found that the

invariant coordinatey plays an essential role in the X (constraint for conformal flatnegs (14
reparametrization-invariant algorithm.

B. General D-dimensional case Hereafter, we use the notatiM{=V,,- - - V4., and mean
. . . . by the repeated indiceg,, ... ,u, the sums from 1 to the
Next,.we W!” extend the previous d'SCL.‘SS'Qn to the_ 9€NgimensionD. We have introduceé an unknown scalar func-
eral D-dimensional case. qu reparametrization invariancey;,, F(h,,), which will be determined later so that we may
we may construct a prior dlstrlbut|on from various curva- absorb fluctuation effects by renormalization. Th&unction
Ll:res, which mtrto_dutce a d“metnc ";S IoDcaIIDciefr?ZeT of :‘rgedo ives the constraint to normalize the probability distribution,
owever, a metric tensa,,,(x) hasD( )/2 local de- and the factoZ is a normalization constant. Also, the “con-

grees of ffr;aedgm w&?mensmngl S?ac? It IS one L?C"’“ straint for conformal flathess” imposes the condition, which
egree of Ireedom that we require Tor learning probiemsy; s the metrics to conformal flat ones. This is given by

Therefore inD>2, we have redundant degrees of freedom - S . ;

’ - : - I, (W D>3, while it I t -
even after the gauge fixing procedure, which eliminddes sign(s wrpe(X)) N 3, while it is needless in two dimen
local degrees of freedom of the reparametrization symmetry Putting the prior distribution(14) into Bayes' rule
group. This redundancy can be naturally resolved when W?l) we obtan the partion function as Z

adopt a conformal flat metrip4], for which there exists a -
coordinate transformatiop”(x) satisfying (1/Zo) J (dN/2) [ Dh,,, DB exi —(1/g)S(h, B, M),

- |2a—D - 1
ho= LW emsoens (19 S=— J dPx\h(V2R)*+ |_DJ d®xvhF(h,,)
* axX* X" e
11
Here, only one local degree of freedom of the me##{y) is TIN |_DJ dDX\/ﬁ—l} - NJ’ d®x Pyin vh
called aconformal modeSuch a conformal gauge” is pos-
sible inD>3 only when we impose the vanishing of Weyl + (constraint term (15

curvature W,,,,, while it is always possible in two-

dimensional space. As will be explicitly constructed later,

the coordinate/* is reparametrization invariant. This ensuresHere, the constarg is introduced to count fluctuation effects

that we obtain reparametrization-invariant fluctuation effectsand is set to 1 in numerical analysB(x) is an auxiliary

which can be canceled out by appropriate counter terms. field to exponentiate the constraint for conformal flatness,
Since only a conformal mode¢ survives under the gauge and Py is the distribution of sample data defined to be

fixing condition(13), we should define the probability distri- Py(x)=(1/N)=N ; 6°(x—x;).

bution to be Q= h/IP=det(@y*/dx*)e”¢/I°. Then, the In the asymptotic casBl>1, the distributionPy(x) be-

prior distribution in the gaugél3) has to penalize large gra- comes continuous and differentiable. Then, the actib)

dients of the conformal mode. It is possible to construct vari-has reparametrization symmetry, and the infinite volume of

ous types of prior distributions. However, for the asymptoticthe symmetry group makes the partition functignll de-

situationN>1, which is equivalent to the ultraviolet limit, it fined. Again, we have to divide the partition functid@nby

is enough to take the square of a curvature with an approprihe infinite volume of the group. We can gauge fixing by

ate number of derivatives. We can see that the number gutting the gauge conditiofil3) into the partition function

derivatives, rather than the details of curvatures, is crucial foand adding appropriate ghost terms to the actibs). We

the performance of an algorithm in the asymptotic casehave found the asymptotic form of the acti¢hb) in the

since the number of derivatives determines the cutoff scaleonformal gaugeg* [5],
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2]|2a-D Doy (4D — 1) a2 ) Here, we have introduced a parametgr. Since a bare pa-
TJ d”y € (dy “Ag) rameterk, does not depend on the scalg we find the
renormalization group equatigrwhich describes the scaling
behavior of the parametés .

2(D—1)
D

1 1
+o dPy F(¢)+in I—DJ dPye ¢-1 +Ndey Pno

dky DR 1

AN~ 9%a NiDRe 2Y)

w

J
- Nf dPx Py In de( %) + (constraint and ghost terms

Thus, we can obtain the scaling form of the parameter to be
sz g R ,\P/Za.
. . . An on-line learning algorithm is how to change our hy-
We expand the_ act|q(fl6) ar(_)und classical SOIUUOUS a_md pothesis about an unknown distribution after receiving a new
perform the functional integrations. In the asymptotic situa-

. N N . ) = example. It is given by the recursion relation of the expecta-
tion N>1, the contribution from ghost fields is negligible Fon value ((y)) of the field (y). In our approximation

compareq with tha:[ from th_e conformal modg. The clgssu:.a evel, the expectation value is just the classical solution
solutions¢(y) and\ are defined by the following equations: &(y)_ Therefore, an on-line learning algorithm is directly

obtained from the variation of Eq17),

(16)

2(D—-1)]? . -
%} (—1)“12*A“p+F'(¢)—ike” ?=—NIPPy, 1
(17 A<¢N(Y)>2§f d®y" Gn(y,y")| = 8°(Y' —Yn+1)
L[ oy ey ANy :
D d’ye ?¥=1, (18) +— e~ {ony")
I
These are the same equations as in the noncovariant case D dk
Na—(D/2a)(én(y))
except for the factof2(D—1)/D]?. Therefore in the con- * 50 dNE N , (22

formal gaugey”, we can also obtain equivalent results to

noncovariant ones. If we apply the normalization E;onditionwhich is proved to give optimal performance only when we
(18) to the integration of Eq(17), we can find thaiA=N  choose our hypothesis functions from 16é&P° class, i.e. .«
+ [dPy F’(&(y))/I°, which determines the mass of the con- =D [2]. Hereafter, we will explicitly attach the number of
formal mode. examplesN to denote the scale. The learning r&g(y,y')

It is straightforward to perform the functional integration is a Green’s function, and defines a local bin sfzgy),
of ¢(y). The leading corrections to the classical solutions
are extracted from the integration up to quadratic terms, , g
which is given by the ratio of functional determinants. We Gnly.y')= [2a-D
can evaluate it in a standard wg§]. As a result, fluctuation

D 2 (_1)(171
2(D— 1) (27T)D/2a/rD/2_1

effects are found to give the actiofl6) the correction: a1 1 DJepuit .
gRNP2a) fgPy @ (Dl20)é/ 1D \where the constantR is XZO (Ynén )P 2 Kp 1 (vnénT),
defined asR=[D/2(D—1)]°'%/(47)P?>~*4DT (D/2)sin@/ =
2a) . (23
Now that we have obtained a local correction term, we e
can determine the unknown functiéif f;ﬁ). As is easily seen, En(y)= |[ } [(i X)Ne‘<"’N(y’>
a counter term can be produced only through the following 2(D-1)
definition of the functionF (¢): D \2 ~1/2a
+ 2_) kNe—(D/2a)<<f>N(y)>} (24)
F(¢)=koe (P20?, (19 “
Here,r is the distance between the poiptandy’, and the
ko=kyn—gRNP/22, (200 functionKp,,_; is a modified Bessel function of the second
1
0.8 FIG. 1. The coordinate systefy*} in learn-
0.6 ing a Gaussian distribution Q*(x)
e =exf —32{(x*—3/8)*+ (x*—3/8)%}/91/Z (O
L sxl,x2s3/4), whereZ is a normalization con-
02 stant. We have performed the algoriti&y) with
0 the region divided into 38 30 pieces.
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FIG. 2. The numerical result of learning the Gaussian distribu@drix) = exd —32{(x*— 3/8)?+ (x2— 3/8)?}/9]/Z (0<x',x?<3/4),
whereZ is a normalization constant. The left and the right graphs show the reduitjrcoordinate system and the one{in*} coordinate
system, respectively. We have performed the algoritB2) for 100 000 data points with the region divided into>380 pieces.

kind. y, is defined to bey,=exdi(2n+1)m/2ale ™. The L
Green'’s function is real and regular for any0. Also, we Yn+1(X)=
have found that the chang®(i\)y is given byA(i\)y=1

1 1
1— N) ya(x)+ Na(xl—xhﬂ),

— D2kye(t~P2a){dntn+ 1))/ 402N, which is the variation of S(xr—=x% . 1) SX—x& . 1)
. 5 1 Ne1) |2 N1
the parameteri{)y=N—DkyJdPy e (P/2a)(¢n)/24|0, YN+ 2(X)= NPL () YN(X) NPL ()
Next, we will discuss the transformation from the coordi- N+LEN+L NFIANHL
nate systenjx*} to {y*}. It is obtained from the variation of X OOC—XE 1), - - - (27)

the action(16) with respect to the coordinatg”,
Here, 8(x*—x3,, 1)/NPy . (X%, 1) is the inverse of the num-

d | Pn(X) ber of the data, of whiclx! coordinates are equal tq. ;.
x| 7y 00 =0. (25 S0, the second equation of E&7) has the same form as the
XTLayH(x first whenx'=x3,, ;, otherwise it gives/?, ;=y? . The con-

formal gaugey* puts labels to the example data, observed in
thex* coordinate, according to their orders from the ertd
of the interval[x* ,x%]. It is clear that this coordinate sys-
D tem has reparametrization invariance. Therefore in the coor-
PL(x}) = [T dx Py(x), dingte systerjy*}, we can id(_antify the distributions that are
i=2 equivalent under reparametrizations.
Figures 1 to 4 show the result of the numerical simulation
D of the algorithms(22) and (27). They are applied to the
Pﬁ(X2|X1)Pﬁ1(Xl):f H dx Py(x), learning of two-dimensional Gaussian distributions, which
=3 are transformed from one to another by a scale transforma-
tion and a shift(the graphs on the left-hand sides of Figs. 2
and 4. Although they look different in thg¢x*} coordinate
system, we can recognize in tHg*} coordinate system
D-1 (Figs. 1 and Bthat they are equivalent distributions to each
PO(XPIxL, ... xPH ] PL=Py(x). (26)  other(the graphs on the right-hand sides of Figs. 2 and 4
=1

This equation is solved by factorizing the distributiBg(x)
asPy=I17 Py [4]

L . I1l. CONCLUSIONS AND DISCUSSIONS
From these distributions, we can construct the conformal

In this paper, we have discussed the on-line learning of
probability distributions in a reparametrization-covariant
[x,x%]to[0,1]. Here,x” andx/ are the minimum and the framework. Reparametrization covariance is fundamental
maximum values of the. coordinate of the region we ob- from the information theoretical point of view, since it is an
serve. In the on-line learning scheme, the functygyix) is  intrinsic property of “information” that it does not depend

gauge ag/ﬁ(x)=f§ﬁ dx* P§;, which transforms the interval

obtained iteratively as on a specific coordinate system to observe it. We have ob-
1
0.8 FIG. 3. The coordinate systefy*} in learn-
~0.6 ing a Gaussian distributio®* (x) =exd —8{(x*
e —3/4)2+ (x2—3/4)%}/Z (1/2<x',x?><1), where
’ Zis a normalization constant. We have performed
0.2 the algorithm(27) with the region divided into
0 30% 30 pieces.
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FIG. 4. The numerical result of learning the
Gaussian  distribution Q* (x) =exd —8{(x!
—3/4)2+ (x2—3/4)%}/Z (1/2<x',x?><1), where
Z is a normalization constant. The left and the
right graphs show the result ix*} coordinate
system andy*} coordinate system, respectively.
We have performed the algorithni22) for
100 000 data points with the region divided into
30X% 30 pieces.

tained an on-line learning algorithm, which is independent ofalso find Eq.(28), not in a coordinate systefix*}, but in an

a specific coordinate system to observe example data. In thievariant one{y*}. Then, the coefficienV, takes into ac-

following, we will consider the properties of the count the local properties of distributions as well as the

reparametrization-invariant algorithm. physical complexity of the system, since the coordinate sys-
First, let us consider the performance of the algorithmtem{y*} locally changes the lattice spaciagaccording to

For simplicity, we will limit ourselves to the one- the integral of distributions. We can see thgtin the cova-

dimensional case. The quadratic error of the algorithm idiant case is smaller that in the non-covariant one, in general.

found to decay as IV in a noncovariant frameworf2], This is easily found in learning a very local constant distri-
bution, for example. As a result, we can expect better perfor-
VpVy 1 mance than in noncovariant case.
<< J dx Q*(X)EN(X)2> > SN (28 Second, the invariant algorithm makes the quadratic error

uniformly convergen4]. A remarkable result is that our
inference makes sense even in the regions where we can
observe a small number of examples. This is traced to the
fact that our geometry to observe data is locally controlled
by the metric, which is the local counterpart of tagoriori

where coefficienty, andV, denote the volumes of momen-
tum and coordinate space, respectively. The coefficignt
comes from the relatioa(x=0)=V, /2. Here, we have to
note thats(x=0) is not equal to infinity in practice. We are
not able to use infinite momentum or infinitesimal wave-€Ngth scald.

length for observation, since we have the physical limit of a On the ﬁther hand, F:ovanant lformulatlon h?s anr adyan-
maximum resolution. Therefore, we should replasé tage over the noncovariant one also in practical applications.

=0) with V,/27 and consider its precise meaning. When®S IS seen in nume_rical results, we can apply the algorithm
we have a lengtfa of lattice spacing as a maximum resolu- to pattern recognition prot.JIe.ms such as V|§ual gnd speeqh
tion length, a half wavelength in the space is able to take é{wformatmn prMocesses. This IS bec:_iuse an |n\_/ar|§1nt coordi-
discrete value frona to V, at the interval ofa. Then,V, is nate systerjy”} enables us to |dent|fy_ the_ distributions that
proportional to the number of bing,/a and simply reflects transform one another by reparametrization.
the physical complexity of the system we use. This result is
equivalent to the universal asymptotic behavior, which is
well known in neural network mode(s,8]. The author would like to thank Y. Kitazawa and Y. Wat-
In the covariant formulation, the conformal gauge plays aabiki for their valuable comments and discussions. This work
crucial role for reparametrization invariance. Once we dewas partially supported by the Grant-in-Aid for Scientific
scribe distributions in invariant coordinates, we may follow Research No. 10750056 from the Ministry of Education, Sci-
the algorithm in the noncovariant case. Therefore, we caence and Culture, Japan.
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