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Reparametrization-covariant theory for on-line learning of probability distributions

Toshiaki Aida
Tokyo Metropolitan College of Aeronautical Engineering, Minami-senjyu, Arakawa-ku, Tokyo 116-0003, Japan

~Received 30 April 2001; published 30 October 2001!

We discuss the on-line learning of probability distributions in a reparametrization covariant formulation.
Reparametrization covariance plays an essential role not only to respect an intrinsic property of ‘‘information’’
but also for pattern recognition problems. We can obtain an optimal on-line learning algorithm with reparam-
etrization invariance, where the conformal gauge connects a covariant formulation with a noncovariant one in
a natural way.
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I. INTRODUCTION

The inference of probability distributions is of fundame
tal importance in learning theory. For example, it gives u
unified framework including both supervised and nonsup
vised learning schemes. One approach to the problem
project the distributions to a space parametrized by a fi
set of coordinates and to determine their locations on
However, this prescription inevitably excludes the distrib
tions with a lot of features. Therefore, efforts have been
voted to the original problem of determining probability di
tributions themselves.

Among others, field theory formulates the problem in
natural way. It is the scaling analysis that leads us to opti
algorithms not only in the batch learning scheme but also
the on-line learning one@1,2#. This is because the scalin
tells us how to control the number of degrees of freedom
we prepare for a learning system. This problem has b
approached from various directions@3#.

However, the algorithms of Refs.@1,2# depend on a spe
cific coordinate, in which we observe example data. Inf
mation or probability distributions are originally independe
of how to describe them. Therefore, it is desirable to der
learning algorithms that respect this intrinsic property of
formation. We can resolve the problem in a geometrica
covariant formulation, which has already been obtained
the context of batch learning@4#. It is reparametrization in-
variance that characterizes such algorithms. Reparamet
tion invariance is also important from the practical point
view. It plays a crucial role in pattern recognition problem
such as visual and speech information processes.

In this paper, we discuss on-line learning of probabil
distributions in a reparametrization-covariant form. We w
find that the conformal gauge plays a crucial role in conne
ing a covariant formulation with a noncovariant one. The
fore, we can also obtain an optimal on-line learning alg
rithm with reparametrization invariance.

II. COVARIANT FORMULATION

Let us describe inference problems in such a way a
independent from a specific coordinate system. We obser
series of sample pointsP1 ,P2 , . . . ,PN in a D-dimensional
space, which are drawn independently from an unkno
probability distributionQ* . Then, we want to infer the dis
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tribution within the framework of on-line learning. In gen
eral, no finite number of example data allows us to determ
the distribution uniquely. Therefore, we have to adopt
probabilistic description, which is given by Bayes’s rule
the probability of a distributionQ @1#.

P @QuP1 , . . . ,PN#5
P@P1 , . . . ,PNuQ#P @Q#

P~P1 , . . . ,PN!
,

5
Q~P1!•••Q~PN!P @Q#

E DQQ~P1!•••Q~PN!P @Q#

,

~1!

whereP @Q# denotes a ‘‘prior distribution.’’ It is a probabil-
ity density in the space of possible distributions and enco
our a priori knowledge of the functionQ.

A. One-dimensional case

First, we start from the case in one-dimensional space
make our learning problem well posed, we must not int
duce too many degrees of freedom to be determined. Th
fore, the prior distribution is chosen to define a scalar fi
theory with a normalization constraint@1# so that it may
suppress short wavelength modes of the probability func
Q enough. Furthermore, reparametrization invariance
quires us to couple the scalar field to one-dimensional gr
ity @4#. Although the gravity may seem to introduce anoth
local degree of freedom, it causes no problem since i
eliminated through the gauge fixing procedure. Introducin
scalar field2`,f,` and a metrich in one-dimensional
space, we write the probability function asQ5Ahe2f/ l . We
should note that the length of a parameterl can be included
in a scalar densityAh. Therefore,l may be fixed to be of unit
length in numerical studies, and only plays a role to ens
the consistency of dimensions. As a result, we can explic
write down the prior distribution in a coordinatex as

P@Q#5
1

Z0
expF2

l

2E dxAh21~]xf!2

2
1

l E dxAhF~f!GdF1

l E dxAhe2f(x)21G . ~2!
©2001 The American Physical Society28-1
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Here, we have introduced an unknown scalar functionF(f),
which is important in the on-line learning scheme and de
mined by the requirement of renormalizability@2#. The d
function gives the constraint to normalize the probability d
tribution, and the factorZ0 is a normalization constant of th
prior distribution.

From the prior distribution~2! and Bayes’ rule~1!,
we find the partition function to be Z
5(1/Z0)*(dl/2p)*Dh Df exp@2(1/g)S(h,f,l)#, where

S5
l

2E dxAh21~]xf!21
1

l E dxAhF~f!

1 ilF1

l E dxAhe2f21G1NE dxPN@f2 ln Ah#.

~3!

The constantg is introduced to count fluctuation effects, an
is set to 1 in numerical analysis.PN is a scalar density o
sample data, given byPN(x)5(1/N)( i 51

N d(x2xi).
For further analysis, we consider the asymptotic situat

N@1 so that we may regard the functionPN(x) as continu-
ous and differentiable. Then, we have to note that the pa
tion function Z is not well defined because of the infini
volume of reparametrization symmetry group. Therefore,
need to divide the functionZ by the volume. This can be
easily done through the gauge fixing procedure, in which
now pick up the metrich satisfying the condition:h(x)
5(dy/dx)2. This gauge fixing condition corresponds to t
‘‘conformal gauge’’ in one-dimensional space. Although t
gauge fixing condition eliminates a local degree of freed
of the metric, we also have ghost fields through the ga
fixing procedure. However, they decouple to other fields,
that we do not have to consider them in the following. Th
we can leave one local degree of freedomf, which is ap-
propriate to learning problems.

The gauge condition leads us to observe the system
reparametrization-invariant coordinate:y(x)5*xAh(s)ds
@4#. This coordinate is equivalent to the proper time in re
tivity theories@5#. In the invariant coordinatey, we can re-
write the action~3! in terms of invariant quantities

S5
l

2E dy~]yf!21
1

l E dy F„f~y!…

1 ilF1

l E dye2f(y)21G1NE dy PN~y!f~y!

2NE dx PN~x!lnAh~x!. ~4!

This form of the action explicitly shows that we obtain on
fluctuation effects with reparametrization invariance. The
fore, this ensures that we can choose the functionF(f),
which keeps the invariance of the action.

Now, we evaluate the functional integration off(y)
around classical solutions. However, we note that thef field
part of the action~4! is identical to the one in the noncova
riant case@2#. Therefore, we can apply our previous result
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the leading correction to the classical actionS(f̂,ĥ,l̂)
1g(AN/2l )*dy e2(1/2)f̂, where the classical solutionsf̂(y)
and l̂ are defined by the equations

2 l 2]y
2f̂1F8~f̂ !2 i l̂e2f̂52NlPN~y!, ~5!

1

l E dy e2f̂(y)51. ~6!

As a result, we introduce a parameterkN and determine the
unknown functionF so as to make the action~4! renormal-
izable.

F~f!5k0e2(1/2)f, k05kN2
g

2
AN. ~7!

Then, applying the constraint~6! to the integration of Eq.~5!,
we find that (i l̂)N5N2kN*dy e2(1/2)f̂N/2l . Hereafter, we
explicitly attach the numberN of the examples we have a
ready observed.

In order to derive the on-line learning algorithm for th
expectation valuêf& of the fieldf, we note that̂ f&.f̂ in
our approximation level. Then, the variation of Eq.~5! gives
the on-line learning algorithm for̂f& in the coordinatey,
which is identical to the one in the noncovariant formulati
and is proved to be optimal@2#,

D^fN~y!&.
1

gE dy8 GN~y,y8!F2d~y82yN11!

1
D~ i l̂ !N

l
e2^fN(y8)&1

1

2l

dkN

dN
e2(1/2)^fN(y8)&G ,

~8!

wheredkN /dN5g/4AN is therenormalization group equa-

tion of the parameter kN . The change D( i l̂)N.1
2kNe(1/2)^fN(yN11)&/4N is derived from the variation of the
parameter (i l̂)N . The Green’s functionGN(y,y8) is the
learning rate withjN(y) as local bin size.

GN~y,y8!.
g

2l
AjN~y!jN~y8!expF2E

min(y,y8)

max(y,y8) ds

jN~s!G ,
~9!

jN~y!5 l F ~ i l̂ !Ne2^fN(y)&1
kN

4
e2(1/2)^fN(y)&G21/2

. ~10!

Finally, we will derive the relation betweenx andy coor-
dinates. We obtain the following equation from the variati
of the action~4! with respect to the functiony(x),

d

dxF PN~x!

y8~x!
G50. ~11!

Equation ~11! is easily integrated to give y(x)
5(1/N)( i 51

N u(x2xi). Here, we have fixed a global degre
of freedom of the metrich(x) so that the functiony(x) may
8-2



th
a

a
d

ep
to
he
e

n
ce
a-
om

l
s
m

et
w

yl

er
es
ts

.
e
i-

-
r
tic
t
p
r
fo
se
a

is
de-
om
-

o

c-
y

n,
-
ch
y

-

s

ss,
be

of

by

REPARAMETRIZATION-COVARIANT THEORY FOR . . . PHYSICAL REVIEW E64 056128
transform the interval@x2 ,x1# to @0,1#, wherex2 and x1

are the coordinates of the lower and the upper ends of
interval we observe. In on-line learning scheme, we m
construct the functiony(x) iteratively,

yN11~x!.S 12
1

ND yN~x!1
1

N
u~x2xN11!. ~12!

From the construction of the coordinatey, we easily see the
reason why we can obtain a reparametrization-invariant
gorithm~8!. The coordinatey labels the data points, observe
in x coordinate, according to their orders from one endx2 of
the interval. Therefore, equivalent distributions under r
arametrizations inx coordinate are described identically
each other in they coordinate. Thus, we have found that t
invariant coordinatey plays an essential role in th
reparametrization-invariant algorithm.

B. General D-dimensional case

Next, we will extend the previous discussion to the ge
eral D-dimensional case. For reparametrization invarian
we may construct a prior distribution from various curv
tures, which introduce a metric as local degrees of freed
However, a metric tensorhmn(x) hasD(D11)/2 local de-
grees of freedom inD-dimensional space. It is one loca
degree of freedom that we require for learning problem
Therefore inD.2, we have redundant degrees of freedo
even after the gauge fixing procedure, which eliminatesD
local degrees of freedom of the reparametrization symm
group. This redundancy can be naturally resolved when
adopt a conformal flat metric@4#, for which there exists a
coordinate transformationym(x) satisfying

hmn~x!5
]yr

]xm

]ys

]xn
e2(2/D)f„y(x)…drs . ~13!

Here, only one local degree of freedom of the metricf(y) is
called aconformal mode. Such a conformal gaugeym is pos-
sible in D.3 only when we impose the vanishing of We
curvature Wmnrs , while it is always possible in two-
dimensional space. As will be explicitly constructed lat
the coordinateym is reparametrization invariant. This ensur
that we obtain reparametrization-invariant fluctuation effec
which can be canceled out by appropriate counter terms

Since only a conformal modef survives under the gaug
fixing condition~13!, we should define the probability distr
bution to be Q5Ah/ l D5det(]ym/]xn)e2f/ l D. Then, the
prior distribution in the gauge~13! has to penalize large gra
dients of the conformal mode. It is possible to construct va
ous types of prior distributions. However, for the asympto
situationN@1, which is equivalent to the ultraviolet limit, i
is enough to take the square of a curvature with an appro
ate number of derivatives. We can see that the numbe
derivatives, rather than the details of curvatures, is crucial
the performance of an algorithm in the asymptotic ca
since the number of derivatives determines the cutoff sc
05612
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of short wavelength modes of the conformal mode. This
also seen from our previous result that the optimal error
cay is realized when we choose our hypothesis function fr
the C2D class @2#. From these reasons, we will limit our
selves to the asymptotic caseN@1 in the following.

As a result, we choose the following prior distribution s
that the conformal modef may not give ultraviolet diver-
gences (2a.D):

P @Q#5
1

Z0
expF2

l 2a2D

2 E dDxAh~“x
a22R!2

2
1

l DE dDxAhF~hmn!GdF 1

l DE dDxAh21G
3~constraint for conformal flatness!. ~14!

Hereafter, we use the notation“x
a[“xm1•••“xma , and mean

by the repeated indicesm1 , . . . ,ma the sums from 1 to the
dimensionD. We have introduced an unknown scalar fun
tion F(hmn), which will be determined later so that we ma
absorb fluctuation effects by renormalization. Thed function
gives the constraint to normalize the probability distributio
and the factorZ0 is a normalization constant. Also, the ‘‘con
straint for conformal flatness’’ imposes the condition, whi
limits the metrics to conformal flat ones. This is given b
)xd„Wmnrs(x)… in D.3, while it is needless in two dimen
sions.

Putting the prior distribution~14! into Bayes’ rule
~1!, we obtain the partition function as Z
5(1/Z0)*(dl/2p)*Dhmn DB exp@2(1/g)S(h,B,l)#,

S5
l 2a2D

2 E dDxAh~“x
a22R!21

1

l DE dDxAhF~hmn!

1 ilF 1

l DE dDxAh21G2NE dDx PNln Ah

1~constraint term!. ~15!

Here, the constantg is introduced to count fluctuation effect
and is set to 1 in numerical analysis.B(x) is an auxiliary
field to exponentiate the constraint for conformal flatne
and PN is the distribution of sample data defined to
PN(x)5(1/N)( i 51

N dD(x2xi).
In the asymptotic caseN@1, the distributionPN(x) be-

comes continuous and differentiable. Then, the action~15!
has reparametrization symmetry, and the infinite volume
the symmetry group makes the partition functionZ ill de-
fined. Again, we have to divide the partition functionZ by
the infinite volume of the group. We can gauge fixing
putting the gauge condition~13! into the partition function
and adding appropriate ghost terms to the action~15!. We
have found the asymptotic form of the action~15! in the
conformal gaugeym @5#,
8-3
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F2~D21!

D G2 l 2a2D

2 E dDy e(4/D21)f~]y
a22Df!2

1
1

l DE dDy F~f!1 ilF 1

l DE dDy e2f21G1NE dDy PNf

2NE dDx PN ln detS ]ym

]xn D1~constraint and ghost terms!.

~16!

We expand the action~16! around classical solutions an
perform the functional integrations. In the asymptotic situ
tion N@1, the contribution from ghost fields is negligibl
compared with that from the conformal mode. The classi
solutionsf̂(y) andl̂ are defined by the following equations

F2~D21!

D G2

~21!al 2aDaf̂1F8~f̂ !2 i l̂e2f̂52NlDPN ,

~17!

1

l DE dDy e2f̂(y)51. ~18!

These are the same equations as in the noncovariant
except for the factor@2(D21)/D#2. Therefore in the con-
formal gaugeym, we can also obtain equivalent results
noncovariant ones. If we apply the normalization conditi
~18! to the integration of Eq.~17!, we can find thati l̂5N

1*dDy F8„f̂(y)…/ l D, which determines the mass of the co
formal modef.

It is straightforward to perform the functional integratio
of f(y). The leading corrections to the classical solutio
are extracted from the integration up to quadratic term
which is given by the ratio of functional determinants. W
can evaluate it in a standard way@6#. As a result, fluctuation
effects are found to give the action~16! the correction:
gRN(D/2a)*dDy e2(D/2a)f/ l D, where the constantR is
defined asR5@D/2(D21)#D/a/(4p)D/2214DG(D/2)sin(D/
2a)p.

Now that we have obtained a local correction term,
can determine the unknown functionF(f̂). As is easily seen,
a counter term can be produced only through the follow
definition of the functionF(f̂):

F~f!5k0e2(D/2a)f, ~19!

k05kN2gRND/2a. ~20!
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Here, we have introduced a parameterkN . Since a bare pa-
rameterk0 does not depend on the scaleN, we find the
renormalization group equation, which describes the scalin
behavior of the parameterkN .

dkN

dN
5g

DR

2a

1

N12D/2a
. ~21!

Thus, we can obtain the scaling form of the parameter to
kN.gRND/2a.

An on-line learning algorithm is how to change our h
pothesis about an unknown distribution after receiving a n
example. It is given by the recursion relation of the expec
tion value ^f(y)& of the field f(y). In our approximation
level, the expectation value is just the classical solut
f̂(y). Therefore, an on-line learning algorithm is direct
obtained from the variation of Eq.~17!,

D^fN~y!&.
1

gE dDy8 GN~y,y8!F2dD~y82yN11!

1
D~ i l̂ !N

l D
e2^fN(y8)&

1
D

2a l D

dkN

dN
e2(D/2a)^fN(y8)&G , ~22!

which is proved to give optimal performance only when w
choose our hypothesis functions from theC2D class, i.e.,a
5D @2#. Hereafter, we will explicitly attach the number o
examplesN to denote the scale. The learning rateGN(y,y8)
is a Green’s function, and defines a local bin sizejN(y),

GN~y,y8!.
g

l 2a2D F D

2~D21!G
2 ~21!a21

~2p!D/2ar D/221

3 (
n50

a21

~gnjN
21!D/222a11KD/221~gnjN

21r !,

~23!

jN~y!5 l F D

2~D21!G
21/aF ~ i l̂ !Ne2^fN(y)&

1S D

2a D 2

kNe2(D/2a)^fN(y)&G21/2a

. ~24!

Here,r is the distance between the pointsy andy8, and the
function KD/221 is a modified Bessel function of the secon
FIG. 1. The coordinate system$ym% in learn-
ing a Gaussian distribution Q* (x)
5exp@232$(x123/8)21(x223/8)2%/9#/Z (0
<x1,x2<3/4), whereZ is a normalization con-
stant. We have performed the algorithm~27! with
the region divided into 30330 pieces.
8-4
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FIG. 2. The numerical result of learning the Gaussian distributionQ* (x)5exp@232$(x123/8)21(x223/8)2%/9#/Z (0<x1,x2<3/4),
whereZ is a normalization constant. The left and the right graphs show the result in$xm% coordinate system and the one in$ym% coordinate
system, respectively. We have performed the algorithm~22! for 100 000 data points with the region divided into 30330 pieces.
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kind. gn is defined to begn[exp@i(2n11)p/2a#e2ip/2. The
Green’s function is real and regular for anyr>0. Also, we
have found that the changeD( i l̂)N is given byD( i l̂)N.1
2D2kNe(12D/2a)^fN(yN11)&/4a2N, which is the variation of
the parameter (i l̂)N5N2DkN*dDy e2(D/2a)^fN&/2a l D.

Next, we will discuss the transformation from the coord
nate system$xm% to $ym%. It is obtained from the variation o
the action~16! with respect to the coordinateym,

]

]xn F PN~x!

]nym~x!
G50. ~25!

This equation is solved by factorizing the distributionPN(x)
asPN5) i 51

D PN
i @4#,

PN
1 ~x1!5E )

i 52

D

dxi PN~x!,

PN
2 ~x2ux1!PN

1 ~x1!5E )
i 53

D

dxi PN~x!,

•••

PN
D~xDux1, . . . ,xD21! )

i 51

D21

PN
i 5PN~x!. ~26!

From these distributions, we can construct the conform

gauge asyN
m(x)5*x

2
m

xm

dxm PN
m , which transforms the interva

@x2
m ,x1

m # to @0,1#. Here,x2
m andx1

m are the minimum and the
maximum values of them coordinate of the region we ob
serve. In the on-line learning scheme, the functionyN

m(x) is
obtained iteratively as
05612
al

yN11
1 ~x!.S 12

1

ND yN
1 ~x!1

1

N
u~x12xN11

1 !,

yN11
2 ~x!.F12

d~x12xN11
1 !

NPN11
1 ~xN11

1 !
GyN

2 ~x!1
d~x12xN11

1 !

NPN11
1 ~xN11

1 !

3u~x22xN11
2 !, . . . . ~27!

Here,d(x12xN11
1 )/NPN11

1 (xN11
1 ) is the inverse of the num

ber of the data, of whichx1 coordinates are equal toxN11
1 .

So, the second equation of Eq.~27! has the same form as th
first whenx15xN11

1 , otherwise it givesyN11
2 5yN

2 . The con-
formal gaugeym puts labels to the example data, observed
thexm coordinate, according to their orders from the endx2

m

of the interval@x2
m ,x1

m #. It is clear that this coordinate sys
tem has reparametrization invariance. Therefore in the co
dinate system$ym%, we can identify the distributions that ar
equivalent under reparametrizations.

Figures 1 to 4 show the result of the numerical simulat
of the algorithms~22! and ~27!. They are applied to the
learning of two-dimensional Gaussian distributions, whi
are transformed from one to another by a scale transfor
tion and a shift~the graphs on the left-hand sides of Figs.
and 4!. Although they look different in the$xm% coordinate
system, we can recognize in the$ym% coordinate system
~Figs. 1 and 3! that they are equivalent distributions to ea
other ~the graphs on the right-hand sides of Figs. 2 and 4!.

III. CONCLUSIONS AND DISCUSSIONS

In this paper, we have discussed the on-line learning
probability distributions in a reparametrization-covaria
framework. Reparametrization covariance is fundamen
from the information theoretical point of view, since it is a
intrinsic property of ‘‘information’’ that it does not depen
on a specific coordinate system to observe it. We have
ed
FIG. 3. The coordinate system$ym% in learn-
ing a Gaussian distributionQ* (x)5exp@28$(x1

23/4)21(x223/4)2%/Z (1/2<x1,x2<1), where
Z is a normalization constant. We have perform
the algorithm~27! with the region divided into
30330 pieces.
8-5
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FIG. 4. The numerical result of learning th
Gaussian distribution Q* (x)5exp@28$(x1

23/4)21(x223/4)2%/Z (1/2<x1,x2<1), where
Z is a normalization constant. The left and th
right graphs show the result in$xm% coordinate
system and$ym% coordinate system, respectively
We have performed the algorithm~22! for
100 000 data points with the region divided in
30330 pieces.
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tained an on-line learning algorithm, which is independen
a specific coordinate system to observe example data. In
following, we will consider the properties of th
reparametrization-invariant algorithm.

First, let us consider the performance of the algorith
For simplicity, we will limit ourselves to the one
dimensional case. The quadratic error of the algorithm
found to decay as 1/N in a noncovariant framework@2#,

K K E dx Q* ~x!eN~x!2L L 5
VpVx

2p

1

N
, ~28!

where coefficientsVp andVx denote the volumes of momen
tum and coordinate space, respectively. The coefficientVp
comes from the relationd(x50).Vp /2p. Here, we have to
note thatd(x50) is not equal to infinity in practice. We ar
not able to use infinite momentum or infinitesimal wav
length for observation, since we have the physical limit o
maximum resolution. Therefore, we should replaced(x
50) with Vp /2p and consider its precise meaning. Wh
we have a lengtha of lattice spacing as a maximum resol
tion length, a half wavelength in the space is able to tak
discrete value froma to Vx at the interval ofa. Then,Vp is
proportional to the number of binsVx /a and simply reflects
the physical complexity of the system we use. This resul
equivalent to the universal asymptotic behavior, which
well known in neural network models@7,8#.

In the covariant formulation, the conformal gauge play
crucial role for reparametrization invariance. Once we
scribe distributions in invariant coordinates, we may follo
the algorithm in the noncovariant case. Therefore, we
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also find Eq.~28!, not in a coordinate system$xm%, but in an
invariant one$ym%. Then, the coefficientVp takes into ac-
count the local properties of distributions as well as
physical complexity of the system, since the coordinate s
tem $ym% locally changes the lattice spacinga according to
the integral of distributions. We can see thatVp in the cova-
riant case is smaller that in the non-covariant one, in gene
This is easily found in learning a very local constant dis
bution, for example. As a result, we can expect better per
mance than in noncovariant case.

Second, the invariant algorithm makes the quadratic e
uniformly convergent@4#. A remarkable result is that ou
inference makes sense even in the regions where we
observe a small number of examples. This is traced to
fact that our geometry to observe data is locally control
by the metric, which is the local counterpart of thea priori
length scalel.

On the other hand, covariant formulation has an adv
tage over the noncovariant one also in practical applicatio
As is seen in numerical results, we can apply the algorit
to pattern recognition problems such as visual and spe
information processes. This is because an invariant coo
nate system$ym% enables us to identify the distributions th
transform one another by reparametrization.
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